首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1352篇
  免费   37篇
  国内免费   5篇
化学   1085篇
晶体学   12篇
力学   11篇
综合类   1篇
数学   58篇
物理学   227篇
  2021年   11篇
  2020年   29篇
  2019年   18篇
  2018年   15篇
  2017年   9篇
  2016年   22篇
  2015年   25篇
  2014年   28篇
  2013年   64篇
  2012年   65篇
  2011年   75篇
  2010年   45篇
  2009年   47篇
  2008年   87篇
  2007年   87篇
  2006年   79篇
  2005年   76篇
  2004年   90篇
  2003年   79篇
  2002年   51篇
  2001年   26篇
  2000年   31篇
  1999年   29篇
  1998年   17篇
  1997年   19篇
  1996年   17篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   21篇
  1991年   13篇
  1990年   15篇
  1989年   15篇
  1988年   9篇
  1987年   14篇
  1986年   4篇
  1985年   17篇
  1984年   11篇
  1983年   5篇
  1982年   5篇
  1981年   9篇
  1980年   13篇
  1979年   5篇
  1978年   7篇
  1977年   3篇
  1976年   9篇
  1975年   9篇
  1974年   3篇
  1973年   6篇
  1967年   4篇
排序方式: 共有1394条查询结果,搜索用时 46 毫秒
81.
A series of amino-acid-based amphiphilic diblock copolymer nano-objects having different morphologies were developed by reversible addition–fragmentation chain-transfer (RAFT) dispersion polymerization of styrene (St) in methanol. This was mediated by six different hydrophilic poly(N-acryloyl amino acid) macro-chain transfer agents (CTAs), including three carboxylic-acid-containing ones, poly(N-acryloyl-l -proline) (PAProOH), poly(N-acryloyl-4-trans-hydroxy-l -proline) (PAHypOH), and poly(N-acryloyl-l -threonine) (PAThrOH) prepared by RAFT polymerization, and their methyl ester forms, PAProOMe, PAHypOMe, and PAThrOMe. The effects of polymerization conditions on RAFT dispersion polymerization of St using a dithiocarbamate-terminated PAProOH was investigated. A systematic study of the effects of monomer conversion and concentration afforded the formation of various morphologies (i.e., spheres, worms, and vesicles). The effects of hydrogen-bonding and ionic interactions of the macro-CTAs on the assembled structures of the nano-objects were evaluated using six different macro-CTAs. Transforming the products from methanol to water via dialysis produced amino-acid-based block copolymer nano-objects, exhibiting pH-responsive morphological change, in aqueous solution.  相似文献   
82.
Silicone rubber samples with gradually changing pore sizes within the range of 70–610 μm are produced using an improved spacer method. The samples are scanned using an X‐ray computed tomography to evaluate their graded structure as compared to uniform rubber. A compressive test reveals that graded porous silicone rubber has characteristic stress–strain curves whose slope changes within a specific strain range depending on the porous structure. Analysis results of local strain based on a digital image correlation of the graded porous silicone rubber under compression demonstrate that the characteristic stress–strain properties are caused by shifts in the main deformation region in the graded structure. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1033–1042  相似文献   
83.
Abstract

In this study, the formation of polyion complex micelles from a pair of poly(L-lysine) homopolymers (P(Lys)) and poly(ethylene glycol)-poly(aspartic acid) block copolymers (PEG-P(Asp)) with varying chain length was demonstrated in aqueous medium. There exists the lower critical chain length in the charged segments of both P(Lys) and PEG-P(Asp) to form stable polyion complex micelles in nanometric scale. The scaled average characteristic line width (ΓTK2) was independent on the detection angles for all combinations, suggesting that the formed polyion complex micelles may have a spherical shape. Furthermore, the transitional diffusion coefficient (DT) had no concentration dependence, indicating the micelle system was free from secondary aggregates (the cluster of micelles). It is of interest that the micellar size was almost constant (ca. 50 nm) regardless of the change in the chain length of the charged segments. Size distribution was extremely narrow, and the values of variance μ2/Γ 2) were always less than 0.1. Laser-Doppler electrophoresis measurements revealed that the polyion complex micelles were electrically neutral, suggesting that the PEG corona surrounding the polyion complex core may contribute to their stable dispersion in an aqueous medium through steric repulsion of the tethered hydrophilic chain, in this case, PEG. This system was considerably stable against the change in ionic strength, and it maintained a constant diameter in the region below 0.4 M NaCl. However, they dissociated under high ionic strength condition as 0.6 M NaCl. The system may have potential utility to include charged peptides and nucleotides in the core, delivering these biologically useful substances into a target site in the body.  相似文献   
84.
The stereoselective direct transformation of N‐(propargylic)hydroxylamines into cis‐2‐acylaziridines was achieved by the combined use of AgBF4 and CuCl. Copper salts were found to promote the transformation of the intermediary 4‐isoxazolines into 2‐acylaziridines and both 3‐aryl‐ and 3‐alkyl‐substituted 2‐acylaziridines could be prepared by using this method. Furthermore, subsequent 1,3‐dipolar cycloaddition of azomethine ylides that were generated in situ from the intermediary 2‐acylaziridines with maleimides was achieved in a stereoselective one‐pot procedure to afford the corresponding 2‐acylpyrrolidines, which consisted of an octahydropyrrolo[3,4‐c]pyrrole skeleton.  相似文献   
85.
An intramolecular aromatic oxidation of a phenolic compound with a hypervalent iodine reagent afforded the coupling product, in which the coupling took place at the para-position of the methoxy goup of the starting material instead of the desired para-position of the isopropenyl group, unfortunately.   相似文献   
86.
We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.  相似文献   
87.
88.
A novel type of three-dimensional (3D) tetrahedral silsesquioxane-based porous frameworks (TSFs) with diamond-like structure was computationally designed using the density functional theory (DFT) and classical molecular mechanics (MM) calculations. The hydrogen adsorption and diffusion properties of these TSFs were evaluated by the methods of grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results reveal that all designed materials possess extremely high porosity (87–93 %) and large H2 accessible surface areas (5,268–6,544 m2 g?1). Impressively, the GCMC simulation results demonstrate that at 77 K and 100 bar, TSF-2 has the highest gravimetric H2 capacity of 29.80 wt%, while TSF-1 has the highest volumetric H2 uptake of 65.32 g L?1. At the same time, the gravimetric H2 uptake of TSF-2 can reach up to 4.28 wt% at the room temperature. The extraordinary performances of these TSF materials in hydrogen storage made them enter the rank of the top hydrogen storage materials so far.  相似文献   
89.
Here it is demonstrated that mesoporous silicas (MPSs) can be used as effective “topological crosslinkers” for poly(N‐isopropylacrylamide) (PNIPA) hydrogels to improve the mechanical property. Three‐dimensional bicontinuous mesporous silica is found to effectively reinforce the PNIPA hydrogels, as compared to nonporous silica and two‐dimensional hexagonally ordered mesoporous silica.  相似文献   
90.
Superelastic materials (crystal‐to‐crystal transformation pseudo elasticity) that consist of organic components have not been observed since superelasticity was discovered in a Au‐Cd alloy in 1932. Superelastic materials have been exclusively developed in metallic or inorganic covalent solids, as represented by Ti‐Ni alloys. Organosuperelasticity is now revealed in a pure organic crystal of terephthalamide, which precisely produces a large motion with high repetition and high energy storage efficiency. This process is driven by a small shear stress owing to the low density of strain energy related to the low lattice energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号